Lecture 03
Convex Sets

Affine set

line through x_{1}, x_{2} : all points

$$
x=\theta x_{1}+(1-\theta) x_{2} \quad(\theta \in \mathbf{R})
$$

affine set: contains the line through any two distinct points in the set
example: solution set of linear equations $\{x \mid A x=b\}$
(conversely, every affine set can be expressed as solution set of system of linear equations)

Convex sets

Convex set: $C \subseteq \mathbb{R}^{n}$ such that

In words, line segment joining any two elements lies entirely in set

Convex combination of $x_{1}, \ldots x_{k} \in \mathbb{R}^{n}$: any linear combination

$$
\theta_{1} x_{1}+\ldots+\theta_{k} x_{k}
$$

with $\theta_{i} \geq 0, i=1, \ldots k$, and $\sum_{i=1}^{k} \theta_{i}=1$. Convex hull of a set C, conv (C), is all convex combinations of elements. Always convex

Examples of convex sets

- Trivial ones: empty set, point, line
- Norm ball: $\{x:\|x\| \leq r\}$, for given norm $\|\cdot\|$, radius r
- Hyperplane: $\left\{x: a^{T} x=b\right\}$, for given a, b
- Halfspace: $\left\{x: a^{T} x \leq b\right\}$
- Affine space: $\{x: A x=b\}$, for given A, b

Lp norms and their unit balls

Recall the Lp norm for $z \in R^{n}$:

$$
\begin{aligned}
& \|z\|_{p}=\left(\sum_{i=1}^{n}\left|z_{i}\right|^{p}\right)^{1 / p}, p \in[1, \infty) \\
& \|z\|_{\infty}=\max _{i}\left|z_{i}\right| \\
& \|z\|_{2}^{2}=\sum_{i} z_{i}^{2}=z^{T} z
\end{aligned}
$$

Lp norms and their unit balls

$$
p=2^{-2}
$$

$$
p=2^{-1.5}
$$

$$
p=2^{-1}
$$

$$
p=2^{-0.5}
$$

$$
p=2^{0}
$$

$$
=0.5
$$

$$
=0.707
$$

$$
=1
$$

$$
\begin{aligned}
p & =2^{1.5} \\
& =2.828
\end{aligned}
$$

$p=2^{2}$

$$
p=2^{1}
$$

$=4$

$$
\begin{aligned}
p & =2^{\infty} \\
& =\infty
\end{aligned}
$$

Hyperplanes and halfspaces

hyperplane: set of the form $\left\{x \mid a^{T} x=b\right\}(a \neq 0)$

halfspace: set of the form $\left\{x \mid a^{T} x \leq b\right\}(a \neq 0)$

$$
\int_{x_{0}}^{a} a^{T} x \geq b
$$

- a is the normal vector
- hyperplanes are affine and convex; halfspaces are convex
- Polyhedron: $\{x: A x \leq b\}$, where inequality \leq is interpreted componentwise. Note: the set $\{x: A x \leq b, C x=d\}$ is also a polyhedron (why?)

- probability simplex:

$$
\operatorname{conv}\left\{e_{1}, \ldots e_{n}\right\}=\left\{w: w \geq 0,1^{T} w=1\right\}
$$

"Unit simplex" (probability simplex) is a convex set

The $(k-1)$-dimensional unit simplex is the set of k-vectors whose components are all

$$
\Delta^{k-1}=\left\{\boldsymbol{x} \in \mathbb{R}_{+}^{k}: \sum_{j=1}^{k} x_{j}=1 .\right\} \quad \begin{aligned}
& \mathbb{R}_{+}^{k} \text { is the nonnegative orthant of } \mathbb{R}^{k} \\
& \left\{\boldsymbol{x} \in \mathbb{R}^{k}: \forall i \in\{1, \ldots, k\}, x_{i} \geq 0\right\}
\end{aligned}
$$

Cones

A set $C \subseteq \mathbb{R}^{n}$ is a cone when with every $x \in C$, the whole ray $\{\lambda x \mid \lambda \geq 0\}$ also belongs to the set C, i.e.,

$$
\lambda x \in C \quad \text { for all } x \in C \text { and } \lambda \geq 0 .
$$

cones in general need not be convex. For example, the set $\left\{x \in \mathbb{R}^{2} \mid x_{1} x_{2}=0\right\}$ is a cone that and it is nonconvex.

The non-negative orthant $R_{+}^{n}=\left\{x \in \mathbb{R}^{n} \mid x \geq 0\right\}$ is a cone that is convex.

Convex Cone

A set C is a convex cone if it is convex and a cone, which means that
for any $x_{1}, x_{2} \in C$ and $\theta_{1}, \theta_{2} \geq 0$, we have

$$
\theta_{1} x_{1}+\theta_{2} x_{2} \in C
$$

Points of this form can be described geometrically as forming the two-dimensional pie slice with apex 0 and edges passing through x_{1} and x_{2}.

The pie slice shows all points of the form $\theta_{1} x_{1}+\theta_{2} x_{2}$, where $\theta_{1}, \theta_{2} \geq 0$.
The apex of the slice (which corresponds to $\theta_{1}=\theta_{2}=0$) is at 0 ;
its edges (which correspond to $\theta_{1}=0$ or $\theta_{2}=0$) pass through the points x_{1} and x_{2}.

Conic Combination

A point of the form $\theta_{1} x_{1}+\cdots+\theta_{k} x_{k}$ with $\theta_{1}, \ldots, \theta_{k} \geq 0$ is called a conic combination (or a nonnegative linear combination) of x_{1}, \ldots, x_{k}.
If x_{i} are in a convex cone C, then every conic combination of x_{i} is in C.
Conversely, a set C is a convex cone if and only if it contains all conic combinations of its elements. The conic hull of a set C is the set of all conic combinations of points in C, i.e.,

$$
\left\{\theta_{1} x_{1}+\cdots+\theta_{k} x_{k} \mid x_{i} \in C, \theta_{i} \geq 0, i=1, \ldots, k\right\}
$$

which is also the smallest convex cone that contains C.

Example Convex Cone: Ice-Cream Cone

A norm cone is the set of the form

$$
C=\left\{(x, t) \in \mathbb{R}^{n} \times \mathbb{R} \mid\|x\| \leq t\right\}
$$

where the norm $\|\cdot\|$ can be any norm in \mathbb{R}^{n}.
The norm cone for Euclidean norm is also known as ice-cream cone or second-order cone.

Boundary of second-order cone in $\mathbf{R}^{3},\left\{\left(x_{1}, x_{2}, t\right) \mid\left(x_{1}^{2}+x_{2}^{2}\right)^{1 / 2} \leq t\right\}$.

Example Convex Cone: PSD Cone

The set \mathbf{S}_{+}^{n} (The set of all positive semidefinite matrices) is a convex cone:
if $\theta_{1}, \theta_{2} \geq 0$ and $A, B \in \mathbf{S}_{+}^{n}$, then $\theta_{1} A+\theta_{2} B \in \mathbf{S}_{+}^{n}$.
Proof: This can be seen directly from the definition of positive semidefiniteness: for any $x \in \mathbf{R}^{n}$, we have

$$
\begin{aligned}
& x^{T}\left(\theta_{1} A+\theta_{2} B\right) x=\theta_{1} x^{T} A x+\theta_{2} x^{T} B x \geq 0, \\
& \text { if } A \succeq 0, B \succeq 0 \text { and } \theta_{1}, \theta_{2} \geq 0 .
\end{aligned}
$$

Example Positive semidefinite cone in \mathbf{S}^{2}. We have

$$
X=\left[\begin{array}{ll}
x & y \\
y & z
\end{array}\right] \in \mathbf{S}_{+}^{2} \quad \Longleftrightarrow \quad x \geq 0, \quad z \geq 0, \quad x z \geq y^{2} .
$$

Key properties of convex sets

- Separating hyperplane theorem: two disjoint convex sets have a separating between hyperplane them

Formally: if C, D are nonempty convex sets with $C \cap D=\emptyset$, then there exists a, b such that

$$
\begin{aligned}
& C \subseteq\left\{x: a^{T} x \leq b\right\} \\
& D \subseteq\left\{x: a^{T} x \geq b\right\}
\end{aligned}
$$

- Supporting hyperplane theorem: a boundary point of a convex set has a supporting hyperplane passing through it

Formally: if C is a nonempty convex set, and $x_{0} \in \mathrm{bd}(C)$, then there exists a such that

$$
C \subseteq\left\{x: a^{T} x \leq a^{T} x_{0}\right\}
$$

Operations preserving convexity

- Intersection: Convexity is preserved under intersection: if S_{1} and S_{2} are convex, then $S_{1} \cap S_{2}$ is convex.
This property extends to the intersection of an infinite number of sets:
if S_{α} is convex for every $\alpha \in \mathcal{A}$, then $\bigcap_{\alpha \in \mathcal{A}} S_{\alpha}$ is convex.
As a simple example, a polyhedron is the intersection of halfspaces and hyperplanes (which are convex), and therefore is convex.
- Scaling and translation:

If $S \subseteq \mathbf{R}^{n}$ is convex, $\alpha \in \mathbf{R}$, and $a \in \mathbf{R}^{n}$, then
the sets αS and $S+a$ are convex, where

$$
\alpha S=\{\alpha x \mid x \in S\}, \quad S+a=\{x+a \mid x \in S\} .
$$

Operations preserving convexity

- Affine images

Recall that a function $f: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ is affine if it is a sum of a linear function and a constant, i.e., if it has the form

$$
f(x)=A x+b, \text { where } A \in \mathbf{R}^{m \times n} \text { and } b \in \mathbf{R}^{m} .
$$

Suppose $S \subseteq \mathbf{R}^{n}$ is convex and $f: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ is an affine function.

Then the image of S under f,

$$
f(S)=\{f(x) \mid x \in S\}
$$

is convex.

Operations preserving convexity

- Affine preimages:
if $f: \mathbf{R}^{k} \rightarrow \mathbf{R}^{n}$ is an affine function, the inverse image of S under f,

$$
f^{-1}(S)=\{x \mid f(x) \in S\}
$$

is convex.

Example: linear matrix inequality solution set
Given $A_{1}, \ldots A_{k}, B \in \mathbb{S}^{n}$, a linear matrix inequality is of the form

$$
x_{1} A_{1}+x_{2} A_{2}+\ldots+x_{k} A_{k} \preceq B
$$

for a variable $x \in \mathbb{R}^{k}$. Let's prove the set C of points x that satisfy the above inequality is convex

Proof:

$$
\text { let } f: R^{k} \rightarrow S_{+}^{n}, f(x)=B-\sum_{i=1}^{k} x_{i} A_{i}
$$

Note that $C=f^{-1}\left(S_{+}^{n}\right)$, affine preimage of convex set.

Operations preserving convexity

- Projection: The projection of a convex set onto some of its coordinates is convex: if $S \subseteq \mathbf{R}^{m} \times \mathbf{R}^{n}$ is convex, then

$$
T=\left\{x_{1} \in \mathbf{R}^{m} \mid\left(x_{1}, x_{2}\right) \in S \text { for some } x_{2} \in \mathbf{R}^{n}\right\}
$$

is convex.

- Sum: The sum of two sets is defined as

$$
S_{1}+S_{2}=\left\{x+y \mid x \in S_{1}, y \in S_{2}\right\}
$$

If S_{1} and S_{2} are convex, then $S_{1}+S_{2}$ is convex.
Proof: To see this, if S_{1} and S_{2} are convex, then so is the Cartesian product

$$
S_{1} \times S_{2}=\left\{\left(x_{1}, x_{2}\right) \mid x_{1} \in S_{1}, x_{2} \in S_{2}\right\}
$$

The image of this set under the linear function $f\left(x_{1}, x_{2}\right)=x_{1}+x_{2}$
is the sum $S_{1}+S_{2}$.

More operations preserving convexity

- Perspective images and preimages: the perspective function is $P: \mathbb{R}^{n} \times \mathbb{R}_{++} \rightarrow \mathbb{R}^{n}$ (where \mathbb{R}_{++}denotes positive reals),

$$
P(x, z)=x / z
$$

for $z>0$. If $C \subseteq \operatorname{dom}(P)$ is convex then so is $P(C)$, and if D is convex then so is $P^{-1}(D)$

- Linear-fractional images and preimages: the perspective map composed with an affine function,

$$
f(x)=\frac{A x+b}{c^{T} x+d}
$$

is called a linear-fractional function, defined on $c^{T} x+d>0$. If $C \subseteq \operatorname{dom}(f)$ is convex then so if $f(C)$, and if D is convex then so is $f^{-1}(D)$

Example: conditional probability set

Let U, V be random variables over $\{1, \ldots n\}$ and $\{1, \ldots m\}$. Let $C \subseteq \mathbb{R}^{n m}$ be a set of joint distributions for U, V, i.e., each $p \in C$ defines joint probabilities

$$
p_{i j}=\mathbb{P}(U=i, V=j)
$$

Let $D \subseteq \mathbb{R}^{n m}$ contain corresponding conditional distributions, i.e., each $q \in D$ defines

$$
q_{i j}=\mathbb{P}(U=i \mid V=j)
$$

Assume C is convex. Let's prove that D is convex. Write

$$
D=\left\{q \in \mathbb{R}^{n m}: q_{i j}=\frac{p_{i j}}{\sum_{k=1}^{n} p_{k j}}, \text { for some } p \in C\right\}=f(C)
$$

where f is a linear-fractional function, hence D is convex

Appendix
 Some notes from linear algebra

Affine Combination

We refer to a point of the form

$$
\theta_{1} x_{1}+\cdots+\theta_{k} x_{k}, \quad \text { where } \theta_{1}+\cdots+\theta_{k}=1,
$$

as an affine combination of the points x_{1}, \ldots, x_{k}.
Using induction from the definition of affine set (i.e., that it contains every affine combination of two points in it), it can be shown that
an affine set contains every affine combination of its points:
If C is an affine set, and

$$
\begin{aligned}
& x_{1}, \ldots, x_{k} \in C, \text { and } \\
& \theta_{1}+\cdots+\theta_{k}=1, \text { then }
\end{aligned}
$$

the point $\theta_{1} x_{1}+\cdots+\theta_{k} x_{k}$ also belongs to C.

Linear Combination and Independence

The vectors x_{1}, \ldots, x_{m} are said to be linearly dependent when the zero vector can be obtained as a nonzero linear combination of these vectors.

Formally, x_{1}, \ldots, x_{m} are linearly dependent when there exists scalars $\alpha_{1}, \ldots, \alpha_{m}$ not all equal to zero and such that

$$
\alpha_{1} x_{1}+\ldots+\alpha_{m} x_{m}=0
$$

The vectors x_{1}, \ldots, x_{m} are said to be linearly independent when they are not linearly dependent.

Formally, they are independent when the equality

$$
\alpha_{1} x_{1}+\ldots+\alpha_{m} x_{m}=0
$$

holds only for $\alpha_{1}=0, \ldots, \alpha_{m}=0$.
x_{0}, \ldots, x_{k} are affinely independent means $x_{1}-x_{0}, \ldots, x_{k}-x_{0}$ are linear independent.

By restricting the coefficients used in linear combinations, one can define the related concepts of affine combination, conical combination, and convex combination:

Type of combination Restrictions on coefficients
Linear combination no restrictions
Affine combination

$$
\sum a_{i}=1
$$

Conical combination $\quad a_{i} \geq 0$
Convex combination $a_{i} \geq 0$ and $\sum a_{i}=1$

Quadratic Forms and Positive Semidefinite Matrices

Given a square matrix $A \in \mathbb{R}^{n \times n}$ and a vector $x \in \mathbb{R}^{n}$, the scalar value $x^{T} A x$ is called a quadratic form.

Written explicitly, we see that

$$
x^{T} A x=\sum_{i=1}^{n} x_{i}(A x)_{i}=\sum_{i=1}^{n} x_{i}\left(\sum_{j=1}^{n} A_{i j} x_{j}\right)=\sum_{i=1}^{n} \sum_{j=1}^{n} A_{i j} x_{i} x_{j}
$$

Note that,

$$
x^{T} A x=\left(x^{T} A x\right)^{T}=x^{T} A^{T} x
$$

the transpose of a scalar is equal to itself

$$
\begin{aligned}
& \Rightarrow 2 x^{T} A x=x^{T} A x+x^{T} A^{T} x=x^{T}\left(A+A^{T}\right) x \\
& \Rightarrow x^{T} A x=x^{T} \frac{1}{2} \underbrace{\left(A+A^{T}\right)} x \\
& \underbrace{\substack{\text { itly always symmetric no } \\
\text { matter what matrix A } \\
\text { would be! }}} \begin{array}{l}
\text { wic form are symmetric. }
\end{array}
\end{aligned}
$$

Positive Semidefinite and Positive Definite Matrices

- A symmetric matrix $A \in \mathbb{S}^{n}$ is positive definite (PD) if for all non-zero vectors $x \in \mathbb{R}^{n}, x^{T} A x>0$.

This is usually denoted $A \succ 0$ (or just $A>0$), and

- A symmetric matrix $A \in \mathbb{S}^{n}$ is positive semidefinite (PSD) if for all vectors $x^{T} A x \geq 0$. This is written $A \succeq 0$ (or just $A \geq 0$), and

Positive Semidefinite and Positive Definite Matrices

We use the notation \mathbf{S}^{n} to denote the set of symmetric $n \times n$ matrices,

$$
\mathbf{S}^{n}=\left\{X \in \mathbf{R}^{n \times n} \mid X=X^{T}\right\}
$$

We use the notation \mathbf{S}_{+}^{n} to denote the set of symmetric positive semidefinite matrices:

$$
\mathbf{S}_{+}^{n}=\left\{X \in \mathbf{S}^{n} \mid X \succeq 0\right\}
$$

and the notation \mathbf{S}_{++}^{n} to denote the set of symmetric positive definite matrices:

$$
\mathbf{S}_{++}^{n}=\left\{X \in \mathbf{S}^{n} \mid X \succ 0\right\} .
$$

(This notation is meant to be analogous to \mathbf{R}_{+}, which denotes the nonnegative reals, and \mathbf{R}_{++}, which denotes the positive reals.)

Negative Semidefinite, Negative Definite, and Indefinite Matrices

- Likewise, a symmetric matrix $A \in \mathbb{S}^{n}$ is negative definite (ND) denoted $A \prec 0$ (or just $A<0$) if for all non-zero $x \in \mathbb{R}^{n}, x^{T} A x<0$.
- Similarly, a symmetric matrix $A \in \mathbb{S}^{n}$ is negative semidefinite (NSD), denoted $A \preceq 0$ (or just $A \leq 0$) if for all $x \in \mathbb{R}^{n}, x^{T} A x \leq 0$.
- Finally, a symmetric matrix $A \in \mathbb{S}^{n}$ is indefinite, if it is neither positive semidefinite nor negative semidefinite - i.e.,
if there exists $x_{1}, x_{2} \in \mathbb{R}^{n}$ such that $x_{1}^{T} A x_{1}>0$ and $x_{2}^{T} A x_{2}<0$.

It should be obvious that if A is positive definite, then
$-A$ is negative definite and vice versa.
Likewise, if A is positive semidefinite then
$-A$ is negative semidefinite and vice versa.
If A is indefinite, then so is $-A$.

