Lecture 03 Convex Sets

Affine set

line through x_1 , x_2 : all points

affine set: contains the line through any two distinct points in the set

example: solution set of linear equations $\{x \mid Ax = b\}$

(conversely, every affine set can be expressed as solution set of system of linear equations)

Convex sets

Convex set: $C \subseteq \mathbb{R}^n$ such that

$$x, y \in C \implies tx + (1-t)y \in C \text{ for all } 0 \le t \le 1$$

In words, line segment joining any two elements lies entirely in set

Convex combination of $x_1, \ldots x_k \in \mathbb{R}^n$: any linear combination

$$\theta_1 x_1 + \ldots + \theta_k x_k$$

with $\theta_i \ge 0$, i = 1, ..., k, and $\sum_{i=1}^k \theta_i = 1$. Convex hull of a set C, $\operatorname{conv}(C)$, is all convex combinations of elements. Always convex

Examples of convex sets

- Trivial ones: empty set, point, line
- Norm ball: $\{x : \|x\| \le r\}$, for given norm $\|\cdot\|$, radius r
- Hyperplane: $\{x : a^T x = b\}$, for given a, b

• Halfspace:
$$\{x : a^T x \leq b\}$$

• Affine space: $\{x : Ax = b\}$, for given A, b

Lp norms and their unit balls

Recall the Lp norm for $z \in \mathbb{R}^n$:

$$\begin{aligned} ||z||_{p} &= \left(\sum_{i=1}^{n} |z_{i}|^{p}\right)^{1/p} , p \in [1,\infty) \\ ||z||_{\infty} &= \max_{i} |z_{i}| \\ ||z||_{2}^{2} &= \sum_{i} z_{i}^{2} = z^{T}z \end{aligned}$$

Lp norms and their unit balls

Hyperplanes and halfspaces

hyperplane: set of the form $\{x \mid a^T x = b\}$ $(a \neq 0)$

- *a* is the normal vector
- hyperplanes are affine and convex; halfspaces are convex

 Polyhedron: {x : Ax ≤ b}, where inequality ≤ is interpreted componentwise. Note: the set {x : Ax ≤ b, Cx = d} is also a polyhedron (why?)

• probability simplex :

$$\operatorname{conv}\{e_1, \dots e_n\} = \{w : w \ge 0, \ 1^T w = 1\}$$

"Unit simplex" (probability simplex) is a convex set

The (k-1)-dimensional unit simplex is the set of k-vectors whose components are all

$$\Delta^{k-1} = \left\{ \boldsymbol{x} \in \mathbb{R}^k_+ : \sum_{j=1}^k x_j = 1. \right\} \quad \begin{array}{l} \mathbb{R}^k_+ \text{ is the nonnegative orthant of } \mathbb{R}^k \\ \{ \boldsymbol{x} \in \mathbb{R}^k : \forall i \in \{1, \dots, k\}, x_i \ge 0 \}. \end{array} \right.$$

Cones

A set $C \subseteq \mathbb{R}^n$ is a *cone* when with every $x \in C$, the whole ray $\{\lambda x \mid \lambda \ge 0\}$ also belongs to the set C, i.e.,

 $\lambda x \in C$ for all $x \in C$ and $\lambda \ge 0$.

cones in general need not be convex. For example,

the set $\{x \in \mathbb{R}^2 \mid x_1 x_2 = 0\}$ is a cone that and it is nonconvex.

The non-negative orthant $R_{+}^{n} = \{x \in \mathbb{R}^{n} \mid x \geq 0\}$ is a cone that is convex.

Convex Cone

A set C is a *convex cone* if it is convex and a cone, which means that

for any $x_1, x_2 \in C$ and $\theta_1, \theta_2 \ge 0$, we have

 $\theta_1 x_1 + \theta_2 x_2 \in C.$

Points of this form can be described geometrically as forming the two-dimensional

pie slice with apex 0 and edges passing through x_1 and x_2 .

The pie slice shows all points of the form $\theta_1 x_1 + \theta_2 x_2$, where θ_1 , $\theta_2 \ge 0$. The apex of the slice (which corresponds to $\theta_1 = \theta_2 = 0$) is at 0; its edges (which correspond to $\theta_1 = 0$ or $\theta_2 = 0$) pass through the points x_1 and x_2 .

Conic Combination

A point of the form $\theta_1 x_1 + \cdots + \theta_k x_k$ with $\theta_1, \ldots, \theta_k \ge 0$ is called a *conic combination* (or a *nonnegative linear combination*) of x_1, \ldots, x_k .

If x_i are in a convex cone C, then every conic combination of x_i is in C.

Conversely, a set C is a convex cone if and only if it contains all conic combinations of its elements.

The *conic hull* of a set C is the set of all conic combinations of points in C, *i.e.*,

 $\{\theta_1 x_1 + \dots + \theta_k x_k \mid x_i \in C, \ \theta_i \ge 0, \ i = 1, \dots, k\},\$

which is also the smallest convex cone that contains $C \; \cdot \;$

Example Convex Cone: Ice-Cream Cone

A norm cone is the set of the form

$$C = \{ (x,t) \in \mathbb{R}^n \times \mathbb{R} \mid ||x|| \le t \},\$$

where the norm $\|\cdot\|$ can be any norm in \mathbb{R}^n .

The norm cone for Euclidean norm is also known as *ice-cream cone* or *second-order cone*.

Boundary of second-order cone in \mathbf{R}^3 , $\{(x_1, x_2, t) \mid (x_1^2 + x_2^2)^{1/2} \le t\}$.

Example Convex Cone: PSD Cone

The set S_{+}^{n} (The set of all positive semidefinite matrices) is a convex cone:

if $\theta_1, \theta_2 \ge 0$ and $A, B \in \mathbf{S}^n_+$, then $\theta_1 A + \theta_2 B \in \mathbf{S}^n_+$.

Proof: This can be seen directly from the definition of positive semidefiniteness: for any $x \in \mathbf{R}^n$, we have

$$x^{T}(\theta_{1}A + \theta_{2}B)x = \theta_{1}x^{T}Ax + \theta_{2}x^{T}Bx \ge 0$$

if $A \succeq 0, B \succeq 0$ and $\theta_{1}, \theta_{2} \ge 0$.

Example Positive semidefinite cone in \mathbf{S}^2 . We have

$$X = \begin{bmatrix} x & y \\ y & z \end{bmatrix} \in \mathbf{S}_{+}^{2} \iff x \ge 0, \quad z \ge 0, \quad xz \ge y^{2}.$$

Boundary of positive semidefinite cone in \mathbf{S}^2 .

Key properties of convex sets

 Separating hyperplane theorem: two disjoint convex sets have a separating between hyperplane them

Formally: if C, D are nonempty convex sets with $C \cap D = \emptyset$, then there exists a, b such that

$$C \subseteq \{x : a^T x \le b\}$$
$$D \subseteq \{x : a^T x \ge b\}$$

• Supporting hyperplane theorem: a boundary point of a convex set has a supporting hyperplane passing through it

Formally: if C is a nonempty convex set, and $x_0 \in bd(C)$, then there exists a such that

$$C \subseteq \{x : a^T x \le a^T x_0\}$$

• Intersection: Convexity is preserved under intersection: if S_1 and S_2 are convex, then $S_1 \cap S_2$ is convex.

This property extends to the intersection of an infinite number of sets:

if S_{α} is convex for every $\alpha \in \mathcal{A}$, then $\bigcap_{\alpha \in \mathcal{A}} S_{\alpha}$ is convex. As a simple example, a polyhedron is the intersection of halfspaces and hyperplanes (which are convex), and therefore is convex.

• Scaling and translation:

If $S \subseteq \mathbf{R}^n$ is convex, $\alpha \in \mathbf{R}$, and $a \in \mathbf{R}^n$, then

the sets αS and S + a are convex, where

$$\alpha S = \{ \alpha x \mid x \in S \}, \qquad S + a = \{ x + a \mid x \in S \}.$$

• Affine images

Recall that a function $f : \mathbb{R}^n \to \mathbb{R}^m$ is *affine* if it is a sum of a linear function and a constant, *i.e.*, if it has the form

f(x) = Ax + b, where $A \in \mathbf{R}^{m \times n}$ and $b \in \mathbf{R}^m$.

Suppose $S \subseteq \mathbf{R}^n$ is convex and $f : \mathbf{R}^n \to \mathbf{R}^m$ is an affine function.

Then the image of S under f,

$$f(S) = \{ f(x) \mid x \in S \},\$$

is convex.

• Affine preimages:

if $f : \mathbf{R}^k \to \mathbf{R}^n$ is an affine function, the *inverse image* of S under f,

$$f^{-1}(S) = \{ x \mid f(x) \in S \},\$$

is convex.

Example: linear matrix inequality solution set

Given $A_1, \ldots, A_k, B \in \mathbb{S}^n$, a linear matrix inequality is of the form

$$x_1A_1 + x_2A_2 + \ldots + x_kA_k \preceq B$$

for a variable $x \in \mathbb{R}^k$. Let's prove the set C of points x that satisfy the above inequality is convex

Proof:

Note that $C = f^{-1}(S^n_+)$, affine preimage of convex set.

Projection: The projection of a convex set onto some of its coordinates is convex:
 if S ⊆ R^m × Rⁿ is convex, then

$$T = \{x_1 \in \mathbf{R}^m \mid (x_1, x_2) \in S \text{ for some } x_2 \in \mathbf{R}^n\}$$

is convex.

• Sum: The sum of two sets is defined as

$$S_1 + S_2 = \{ x + y \mid x \in S_1, y \in S_2 \}.$$

If S_1 and S_2 are convex, then $S_1 + S_2$ is convex.

Proof: To see this, if S_1 and S_2 are convex, then so is the Cartesian product

$$S_1 \times S_2 = \{(x_1, x_2) \mid x_1 \in S_1, x_2 \in S_2\}.$$

The image of this set under the linear function $f(x_1, x_2) = x_1 + x_2$ is the sum $S_1 + S_2$.

More operations preserving convexity

• Perspective images and preimages: the perspective function is $P : \mathbb{R}^n \times \mathbb{R}_{++} \to \mathbb{R}^n$ (where \mathbb{R}_{++} denotes positive reals),

$$P(x,z) = x/z$$

for z > 0. If $C \subseteq dom(P)$ is convex then so is P(C), and if D is convex then so is $P^{-1}(D)$

 Linear-fractional images and preimages: the perspective map composed with an affine function,

$$f(x) = \frac{Ax+b}{c^T x+d}$$

is called a linear-fractional function, defined on $c^T x + d > 0$. If $C \subseteq \text{dom}(f)$ is convex then so if f(C), and if D is convex then so is $f^{-1}(D)$

Example: conditional probability set

Let U, V be random variables over $\{1, \ldots n\}$ and $\{1, \ldots m\}$. Let $C \subseteq \mathbb{R}^{nm}$ be a set of joint distributions for U, V, i.e., each $p \in C$ defines joint probabilities

$$p_{ij} = \mathbb{P}(U = i, V = j)$$

Let $D \subseteq \mathbb{R}^{nm}$ contain corresponding conditional distributions, i.e., each $q \in D$ defines

$$q_{ij} = \mathbb{P}(U = i | V = j)$$

Assume C is convex. Let's prove that D is convex. Write

$$D = \left\{ q \in \mathbb{R}^{nm} : q_{ij} = \frac{p_{ij}}{\sum_{k=1}^{n} p_{kj}}, \text{ for some } p \in C \right\} = f(C)$$

where f is a linear-fractional function, hence D is convex

<u>Appendix</u>

Some notes from linear algebra

Affine Combination

We refer to a point of the form

 $\theta_1 x_1 + \dots + \theta_k x_k$, where $\theta_1 + \dots + \theta_k = 1$,

as an affine combination of the points x_1, \ldots, x_k .

Using induction from the definition of affine set (*i.e.*, that it contains every affine combination of two points in it), it can be shown that

an affine set contains every affine combination of its points:
If C is an affine set, and

$$x_1, \ldots, x_k \in C$$
, and
 $\theta_1 + \cdots + \theta_k = 1$, then
the point $\theta_1 x_1 + \cdots + \theta_k x_k$ also belongs to C.

Linear Combination and Independence

The vectors x_1, \ldots, x_m are said to be *linearly dependent* when the zero vector can be obtained as a nonzero linear combination of these vectors.

Formally, x_1, \ldots, x_m are linearly dependent when there exists scalars $\alpha_1, \ldots, \alpha_m$ not all equal to zero and such that

$$\alpha_1 x_1 + \ldots + \alpha_m x_m = 0.$$

The vectors x_1, \ldots, x_m are said to be *linearly independent* when they are not linearly dependent.

Formally, they are independent when the equality

$$\alpha_1 x_1 + \ldots + \alpha_m x_m = 0$$

holds only for $\alpha_1 = 0, \ldots, \alpha_m = 0$.

 $x_0, ..., x_k$ are affinely independent means $x_1 - x_0, ..., x_k - x_0$ are linear independent.

By restricting the coefficients used in linear combinations, one can define the related concepts of **affine combination**, **conical combination**, and **convex combination**:

Type of combination Restrictions on coefficients

Linear combination no restrictions

Affine combination

$$\sum a_i = 1$$

Conical combination $a_i \geq 0$

Convex combination
$$\ a_i \geq 0$$
 and $\sum a_i = 1$

Quadratic Forms and Positive Semidefinite Matrices

Given a square matrix $A \in \mathbb{R}^{n \times n}$ and a vector $x \in \mathbb{R}^n$, the scalar value $x^T A x$ is called a quadratic form.

Written explicitly, we see that

the

$$x^{T}Ax = \sum_{i=1}^{n} x_{i}(Ax)_{i} = \sum_{i=1}^{n} x_{i}\left(\sum_{j=1}^{n} A_{ij}x_{j}\right) = \sum_{i=1}^{n} \sum_{j=1}^{n} A_{ij}x_{i}x_{j}$$

Note that,
$$x^{T}Ax = (x^{T}Ax)^{T} = x^{T}A^{T}x$$

the transpose of a scalar
is equal to itself
$$\Rightarrow 2x^{T}Ax = x^{T}Ax + x^{T}A^{T}x = x^{T}(A + A^{T})x$$

 $\Rightarrow x^T A x = x^T \frac{1}{2} (A + A^T) x$

For this reason, we often implicitly assume that the matrices appearing in a quadratic form are symmetric. is always symmetric no matter what matrix A would be!

Positive Semidefinite and Positive Definite Matrices

• A symmetric matrix $A \in \mathbb{S}^n$ is **positive definite** (PD) if for all non-zero vectors $x \in \mathbb{R}^n, x^T A x > 0.$

This is usually denoted $A \succ 0$ (or just A > 0), and

• A symmetric matrix $A \in \mathbb{S}^n$ is **positive semidefinite** (PSD) if for all vectors $x^T A x \ge 0$.

This is written $A \succeq 0$ (or just $A \ge 0$), and

Positive Semidefinite and Positive Definite Matrices

We use the notation \mathbf{S}^n to denote the set of symmetric $n \times n$ matrices,

$$\mathbf{S}^n = \{ X \in \mathbf{R}^{n \times n} \mid X = X^T \},\$$

We use the notation \mathbf{S}_{+}^{n} to denote the set of symmetric positive semidefinite matrices:

$$\mathbf{S}_{+}^{n} = \{ X \in \mathbf{S}^{n} \mid X \succeq 0 \},\$$

and the notation \mathbf{S}_{++}^n to denote the set of symmetric positive definite matrices:

$$\mathbf{S}_{++}^n = \{ X \in \mathbf{S}^n \mid X \succ 0 \}.$$

(This notation is meant to be analogous to \mathbf{R}_+ , which denotes the nonnegative reals, and \mathbf{R}_{++} , which denotes the positive reals.)

Negative Semidefinite, Negative Definite, and Indefinite Matrices

• Likewise, a symmetric matrix $A \in \mathbb{S}^n$ is *negative definite* (ND) denoted $A \prec 0$ (or just A < 0) if for all non-zero $x \in \mathbb{R}^n$, $x^T A x < 0$.

• Similarly, a symmetric matrix $A \in \mathbb{S}^n$ is *negative semidefinite* (NSD), denoted $A \leq 0$ (or just $A \leq 0$) if for all $x \in \mathbb{R}^n$, $x^T A x \leq 0$.

• Finally, a symmetric matrix $A \in \mathbb{S}^n$ is *indefinite*, if it is neither positive semidefinite nor negative semidefinite — i.e.,

if there exists $x_1, x_2 \in \mathbb{R}^n$ such that $x_1^T A x_1 > 0$ and $x_2^T A x_2 < 0$.

It should be obvious that if A is positive definite, then

-A is negative definite and vice versa.

Likewise, if A is positive semidefinite then

-A is negative semidefinite and vice versa.

If A is indefinite, then so is -A.